Data Management
Special Fields
Data returned includes special fields that provide additional context or metadata about the records.
{
"meta_master_id": The ID column value of the master record,
"meta_current_id": The ID column value of the current version of the record,
"meta_status": The row life cycle status (New, Staged, Published, Deleted),
"meta_title": The title field value of the record (if applicable),
"meta_updated": The last updated timestamp of the record,
}
Related Rows
Table row relationships are managed through a bridging table. This enables much greater flexibility in representing many-to-many relationships between records.
It also makes it possible to track when and who created or modified relationships, and to add a relationship type, along with other boolean relationship states.
Related rows can be queried using the relatedTable and relatedTable_id parameters in the /getDataRows endpoint.
{
// required fields
"parent_id": The ID of the parent record in the relationship,
"parent_table": The name of the parent table,
"name": The name of the child table,
"linked": The master_id of the related child record,
"sibling": boolean,
// managed by the Admin system
"linked_date": timestamp of when the relationship was created,
"linked_user": ID of the Admin user who created the relationship,
// optional fields
"type": The relationship type ID (if applicable).
"attr1": Custom boolean attribute field 1,
"attr2": Custom boolean attribute field 2,
"attr3": Custom boolean attribute field 3,
"sort_order": Integer defining the sort order of the relationship
"display_order": Integer defining the display order of the relationship
"reltype": The name of the relationship type (if applicable)
"roperator": The relationship operator (if applicable)
"rvalue": The relationship value (if applicable)
}
Data Management
The data management endpoints provide flexible querying, creation, updating, and deletion of records.
POST/getDataRows
Queries database records with advanced filtering, sorting, and pagination.
Request Body
{
"table": "products",
"fields": "id, title, price, category, inStock",
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "category",
"operator": "equals",
"value": "electronics"
},
{
"field": "price",
"operator": "less_than",
"value": "1000"
},
{
"field": "inStock",
"operator": "equals",
"value": "1"
}
]
},
"orderBy": "price DESC",
"isPaging": true,
"perPage": 50,
"page": 1,
"isLive": true
}
Parameters Reference
-
table
string
required
Name of the database table to query. This should match a table name configured in your Infomaxim application schema.
Example:
"products","users","orders" -
fields
string
Comma-separated list of field names to retrieve from the table. Controls which columns are returned in the result set.
Options:
"*"- Returns all fields from the table (default if not specified)"id, name, email"- Returns only specified fields"COUNT(*) as total"- Aggregate functions are supported
Best Practice: Always specify only the fields you need to reduce payload size and improve performance.
-
whereConditions
object
Structured WHERE clause for filtering records.
Structure:
{ "operator": "AND" | "OR", "conditions": [ { "field": "column_name", "operator": "equals" | "not_equals" | "greater_than" | "less_than" | "greater_than_or_equal" | "less_than_or_equal" | "like" | "not_like" | "in" | "not_in" | "between" | "is_null" | "is_not_null", "value": "search_value" | ["array", "of", "values"] } ] }Supported Operators:
equals,=- Exact match (e.g., status = 'active')not_equals,!=- Not equal (e.g., status != 'deleted')greater_than,>- Greater than (e.g., price > 100)less_than,<- Less than (e.g., quantity < 10)greater_than_or_equal,>=- Greater than or equalless_than_or_equal,<=- Less than or equallike- Pattern matching with % wildcard (e.g., "%wireless%")not_like- Inverse pattern matchingin- Match any value in array (e.g., ["active", "pending"])not_in- Match none of values in arraybetween- Range between two values (value must be array: [min, max])is_null- Field is NULL (no value needed)is_not_null- Field is not NULL (no value needed)
See the WHERE Clause section for detailed examples.
-
orderBy
string
Specifies the field(s) to sort results by and the sort direction.
Format:
"field_name [ASC|DESC]"Examples:
"price DESC"- Sort by price, highest first"createdAt ASC"- Sort by creation date, oldest first"lastName ASC, firstName ASC"- Multi-field sorting"RAND()"- Random order (for SQL Server:"NEWID()")
Default: If not specified, results are returned in the order they appear in the database (typically by primary key).
-
isPaging
boolean
Enables pagination of results. When set to
true, limits the number of results returned and provides pagination metadata.Values:
true- Enable pagination (use withpageandperPage)false- Disable pagination, return all matching records (default)
Important: For large datasets, always use pagination to avoid performance issues and timeout errors.
-
perPage
number
Number of records to return per page when pagination is enabled.
Range: 1 to 100
Default: 50
Recommendation: Use smaller values (10-20) for mobile devices, larger values (50-100) for desktop applications to balance performance and user experience.
-
page
number
The page number to retrieve when pagination is enabled. Pages are 1-indexed (first page is 1, not 0).
Default: 1 (first page)
Example: With
perPage: 50, page 1 returns records 1-50, page 2 returns records 51-100, etc. -
distinct
boolean
Returns only unique/distinct records, eliminating duplicates.
Values:
true- Return only distinct recordsfalse- Allow duplicate records (default)
Example: Get unique categories:
fields: "category", distinct: true -
record
boolean
Returns a single object instead of an array when set to
true. Useful when you expect exactly one result.Values:
true- Return single object (first record only)false- Return array of objects (default)
Example: Get single product by ID:
whereConditions: {...}, record: true -
rows
number
Maximum number of rows to return from the query. Different from pagination - this limits the total result set.
Default: -1 (no limit)
Example: Get top 10 records:
rows: 10, orderBy: "price DESC" -
relatedTable
string
Name of a related table to join with the main table. Used for fetching related data in a single query.
Example: Get products with their categories:
table: "products", relatedTable: "categories"Note: Works in conjunction with
relatedTable_idparameter. -
relatedTable_id
number or string
ID of the related record or the foreign key field name for relationship joins.
Example:
relatedTable: "categories", relatedTable_id: 5Note: Can accept encrypted IDs when using secure mode.
-
isReverseRelated
boolean
Reverses the direction of the relationship join.
Values:
true- Reverse the join directionfalse- Normal join direction (default)
-
secureId
string
Encrypted record ID for secure single-record retrieval. When provided, automatically adds a WHERE clause for this ID.
Example:
table: "products", secureId: "encrypted_id_string"Note: The ID is decrypted server-side and used safely in the query.
-
isLive
boolean
Returns only live/published records from versioned tables.
Values:
true- Return only published/live datafalse- Return all versions (default)
Note: Use this for production data queries to ensure only published content is shown.
-
isPublished
boolean
Alias for
isLive. Returns only published records. -
isStage
boolean
Returns staging/preview versions of records instead of published versions.
Values:
true- Return staging datafalse- Return published data (default)
-
isAppGrid
boolean
Returns raw data directly from the table, bypassing the versioning system entirely.
Values:
true- Return raw, unversioned datafalse- Use versioning system (default)
-
fullText
boolean
Enables full-text search mode using SQL Server's full-text search capabilities.
Values:
true- Enable full-text search (use withs_keyword)false- Standard search (default)
-
s_keyword
string
Search keyword(s) for full-text search. Used when
fullTextis enabled.Example:
s_keyword: "wireless headphones", fullText: trueNote: Automatically filters out common noise words and uses SQL Server full-text search.
-
debugOn
boolean
Includes the generated SQL query and parameters in the response for debugging purposes.
Values:
true- Include debug information in responsefalse- Normal response (default)
Warning: Only use in development environments. Do not enable in production as it exposes query structure.
Advanced Query Examples
Example 1: Complex Filtering with Multiple Conditions
{
"table": "products",
"fields": "id, name, price, category, inStock",
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "category",
"operator": "in",
"value": ["electronics", "computers"]
},
{
"field": "price",
"operator": "between",
"value": ["100", "1000"]
},
{
"field": "inStock",
"operator": "greater_than",
"value": "0"
},
{
"field": "name",
"operator": "like",
"value": "%wireless%"
}
]
},
"orderBy": "price ASC",
"isPaging": true,
"perPage": 25,
"page": 1
}
Returns products in electronics or computers categories, priced between $100-$1000, currently in stock, with "wireless" in the name.
Example 2: Full-Text Search Query
{
"table": "products",
"fields": "id, title, price, description",
"s_keyword": "wireless bluetooth headphones",
"fullText": true,
"orderBy": "rank DESC",
"isPaging": true,
"perPage": 50
}
Performs a full-text search for products containing the keywords, ranked by relevance.
Example 3: Related Table Query
{
"table": "products",
"fields": "products.id, products.title, products.price, categories.name as categoryName",
"relatedTable": "categories",
"relatedTable_id": "category_id",
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "products.status",
"operator": "equals",
"value": "active"
}
]
},
"isLive": true,
"orderBy": "products.title ASC"
}
Returns active products with their category information using the relationship system.
Example 4: Get Single Record
{
"table": "products",
"fields": "id, title, price, description, images",
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "id",
"operator": "equals",
"value": "123"
}
]
},
"record": true,
"isLive": true
}
Returns a single product object (not an array) for the specified ID.
Example 5: Get Distinct Values
{
"table": "products",
"fields": "category",
"distinct": true,
"orderBy": "category ASC",
"isLive": true
}
Returns a list of all unique product categories, sorted alphabetically.
Success Response (200 OK)
{
"status": "Success",
"data": {
"rows": [
{
"id": 101,
"title": "Wireless Headphones",
"price": 299.99,
"category": "electronics",
"inStock": 1
},
{
"id": 102,
"title": "Smart Watch",
"price": 399.99,
"category": "electronics",
"inStock": 1
}
],
"pagination": {
"total": 45,
"page": 1,
"perPage": 50,
"totalPages": 1
}
}
}
Example Usage
// JavaScript Example
const response = await fetch('http://localhost:3001/getDataRows', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + accessToken,
'Content-Type': 'application/json'
},
body: JSON.stringify({
table: 'products',
fields: 'id, title, price',
whereConditions: {
operator: 'AND',
conditions: [
{ field: 'category', operator: 'equals', value: 'electronics' },
{ field: 'price', operator: 'less_than', value: '1000' }
]
},
orderBy: 'price DESC',
isPaging: true,
perPage: 50,
page: 1,
isLive: true
})
});
const data = await response.json();
console.log(data.data.rows);
POST/saveRow
Creates a new record or updates an existing record in the database.
Create New Record
{
"table": "products",
"data": {
"title": "New Product",
"price": 499.99,
"category": "electronics",
"description": "A brand new product",
"inStock": 1
}
}
Update Existing Record
{
"table": "products",
"key": 101,
"keyfield": "id",
"data": {
"title": "Updated Product Name",
"price": 449.99,
"inStock": 0
}
}
Success Response (200 OK)
{
"status": "Success",
"data": {
"id": 103,
"message": "Record saved successfully"
}
}
Saving with Binary Attachments
The /saveRow endpoint supports saving binary attachments (images) directly within the data payload. When a data property contains a base64-encoded data URL, the system automatically:
- Parses and extracts the image data from the base64 string
- Saves the file to the asset storage system
- Creates a corresponding entry in the
aurora_assetstable - Replaces the property value with the new asset filename
Supported Format
Binary attachments must be provided as base64-encoded data URLs in the following format:
data:image/<type>;base64,<base64-encoded-data>
Supported image types: png, jpeg, jpg, gif, webp, svg+xml
Request Example with Binary Attachment
{
"table": "products",
"data": {
"title": "Product with Image",
"price": 299.99,
"category": "electronics",
"product_image": ""
}
}
JavaScript Example
// Convert file to base64 data URL
async function fileToBase64(file) {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.readAsDataURL(file);
reader.onload = () => resolve(reader.result);
reader.onerror = error => reject(error);
});
}
// Save record with binary attachment
async function saveProductWithImage(fileInput) {
const base64Image = await fileToBase64(fileInput.files[0]);
const response = await fetch('http://localhost:3001/saveRow', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + accessToken,
'Content-Type': 'application/json'
},
body: JSON.stringify({
table: 'products',
data: {
title: 'Product with Image',
price: 299.99,
product_image: base64Image // Base64 data URL
}
})
});
const result = await response.json();
console.log('Saved with asset:', result);
}
Response Example
After successful save, the response includes the new record ID. The binary attachment field is automatically converted to the asset filename:
{
"status": "Success",
"id": 104,
"data": {
"id": 104
}
}
The product_image field in the database will contain the new asset filename (e.g., "104_product_image_20231215123456.png") instead of the base64 data.
Important Notes
- Image Detection: Only properties with values starting with
data:imageare processed as binary attachments. Other data URL types (e.g.,data:application/pdf) are stored as-is without processing. Use the /files/upload endpoint for non-image files. - Automatic Asset Creation: Each binary attachment creates a new record in the
aurora_assetstable with versioning support. - File Naming: Generated filenames follow the pattern:
<assetId>_<fieldName>_<timestamp>.<extension>. For example, if you save a PNG image to a field namedproduct_image, the resulting filename might be104_product_image_202312151234567890.png, where104is the asset ID and the timestamp is automatically generated. - Multiple Attachments: You can include multiple binary attachment fields in a single save request. Each will be processed and stored independently.
- Size Considerations: Base64 encoding increases file size by approximately 33%. For files larger than 5MB, consider using the dedicated /files/upload endpoint instead, as large base64 payloads can significantly increase request size and processing time.
Alternative: Using File Upload Endpoint
For larger files or when you need more control over the upload process, use the dedicated /files/upload endpoint. After uploading, reference the returned filename in your /saveRow request:
// Step 1: Upload file using /files/upload endpoint
const formData = new FormData();
formData.append('file', fileInput.files[0]);
const uploadResponse = await fetch('http://localhost:3001/files/upload', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + accessToken,
'x-file-id': 'unique_id_123',
'name': fileInput.files[0].name,
'size': fileInput.files[0].size.toString(),
'app-id': '1'
},
body: formData
});
const uploadResult = await uploadResponse.json();
// Step 2: Save record with file reference
const saveResponse = await fetch('http://localhost:3001/saveRow', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + accessToken,
'Content-Type': 'application/json'
},
body: JSON.stringify({
table: 'products',
data: {
title: 'Product with Uploaded Image',
price: 299.99,
product_image: uploadResult.data.filename // Reference the uploaded file
}
})
});
POST/deleteRow
Deletes a record from the database.
Request Body
{
"table": "products",
"id": 103
}
Success Response (200 OK)
{
"status": "Success",
"message": "Record deleted successfully"
}
POSTgetApp/:domain
Retrieves application configuration by domain name.
URL Parameters
-
domain
string
required
Domain name of the application (e.g., "example.com").
Success Response (200 OK)
{
"status": "Success",
"data": {
"appID": 1,
"name": "My Application",
"domain": "example.com",
"settings": {
/* Application-specific settings */
}
}
}
POST/initFolders
Initializes the folder structure for a specific table. This endpoint creates a root folder if one doesn't exist and associates all existing records with that root folder. This is typically called when enabling folder organization for a table for the first time.
Authentication
Required - JWT Bearer token authentication
Authorization: Bearer <access_token>
Request Body
{
"table": "products"
}
Request Body Parameters
-
table
string
required
The name of the database table to initialize folder organization for. This should be the table_database_name as configured in the aurora_tables system table.
Example:
"products","articles","events"
Business Logic
- Authentication: Validates JWT token and retrieves user context
- Root Check: Checks if a root folder already exists for the specified table in aurora_folders
- Root Creation: If no root folder exists, creates one with title 'Root' and parent_id of 0
- Record Association: Retrieves all existing records from the specified table and creates relationship entries in aurora_related linking each record to the root folder
- Folder Table: Uses 'aurora_folders' as the folder relationship table
When to Use
- When enabling folder organization for an existing table with existing data
- As part of an application setup or migration process
- When the folder structure needs to be reset to a single root folder
Success Response (200 OK)
// Returns the root folder ID (numeric)
123
The response is the ID of the root folder. If a root folder already exists, it returns the existing root folder ID. If one was created, it returns the new root folder ID.
Example Usage
// JavaScript Example - Initialize folders for a products table
const response = await fetch('http://localhost:3001/initFolders', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + accessToken,
'Content-Type': 'application/json'
},
body: JSON.stringify({
table: 'products'
})
});
const rootFolderId = await response.json();
console.log('Root folder ID:', rootFolderId);
// Now you can use this root folder ID to:
// 1. Query items in the root folder using getrelated
// 2. Create subfolders by inserting into aurora_folders with parent_id = rootFolderId
// 3. Move items to subfolders using pasteItemToFolder
Related Tables
- aurora_folders: Stores the folder hierarchy with fields: id, title, parent_id, table_name
- aurora_related: Stores the relationships between records and folders
- aurora_tables: Contains table metadata including whether the table supports live/staged versioning
POST/addrelated
Creates a relationship between two records in different tables using the aurora_related bridging table. This endpoint is the core mechanism for establishing many-to-many relationships between records.
Authentication
No authentication required for basic usage. The endpoint automatically retrieves app context from request headers.
Request Body
{
"data": {
"parent_table": "products",
"parent_id": 101,
"name": "categories",
"linked": 5,
"reltype": "primary",
"sibling": false,
"attr1": true,
"attr2": false,
"attr3": false,
"sort_order": 1,
"display_order": 1
},
"check": true,
"secure": false
}
Request Body Parameters
-
data
object
required
Object containing the relationship details.
-
data.parent_table
string
required
The name of the parent table in the relationship.
Example:
"products","articles" -
data.parent_id
number | string
required
The master_id of the parent record. Can be an encrypted string if using secure mode (prefix with underscore _parent_id for automatic decryption).
Example:
101or"encrypted_id_string" -
data.name
string
required
The name of the related/child table.
Example:
"categories","aurora_folders","tags" -
data.linked
number | string
required
The master_id of the related/child record. Can be an encrypted string if using secure mode (prefix with underscore _linked for automatic decryption).
Example:
5or"encrypted_id_string" -
data.reltype
string
The relationship type identifier. Used to differentiate multiple relationship types between the same tables.
Examples:
"primary"- Primary category"secondary"- Secondary category"featured"- Featured relationship""ornull- Default/no type
-
data.sibling
boolean
Indicates if this is a sibling relationship (same level) rather than parent-child.
Default:
false -
data.attr1
boolean
Custom boolean attribute field 1. Use for application-specific relationship flags.
Example use:
attr1 = truefor "is_featured" -
data.attr2
boolean
Custom boolean attribute field 2.
-
data.attr3
boolean
Custom boolean attribute field 3.
-
data.sort_order
number
Integer defining the sort order of the relationship. Lower numbers appear first.
Example:
1,2,3 -
data.display_order
number
Integer defining the display order of the relationship (separate from sort order for UI flexibility).
-
check
boolean
When true, checks if the relationship already exists before creating. Prevents duplicate relationships.
Default:
falseRecommendation: Set to
truewhen relationships should be unique. -
secure
boolean
Deprecated. Use underscore prefix on properties instead (e.g.,
_parent_id) for automatic decryption.Default:
false
Business Logic
- App Context: Retrieves app ID from request headers
- User Context: Retrieves user information for audit trail (linked_user, linked_date)
- Property Decryption: Any property prefixed with underscore (_) is automatically decrypted
- Duplicate Check: If
check: true, queries existing relationships before inserting - Relationship Creation: Inserts a new row into aurora_related with all provided fields
- Audit Trail: Automatically records linked_date and linked_user
Common Use Cases
Use Case 1: Assign a Product to a Category
{
"data": {
"parent_table": "products",
"parent_id": 101,
"name": "categories",
"linked": 5,
"reltype": "primary"
},
"check": true
}
Creates a primary category relationship between product 101 and category 5.
Use Case 2: Add a Record to a Folder
{
"data": {
"parent_table": "articles",
"parent_id": 50,
"name": "aurora_folders",
"linked": 12
},
"check": false
}
Moves article 50 into folder 12. Used by the admin folder navigation system.
Use Case 3: Add Tags to an Item with Secure IDs
{
"data": {
"parent_table": "products",
"_parent_id": "encrypted_product_id",
"name": "tags",
"_linked": "encrypted_tag_id",
"sort_order": 1
}
}
Uses encrypted IDs (prefixed with underscore) that are automatically decrypted server-side.
Success Response (200 OK)
{
"status": "Success",
"id": 456
}
Example Usage
// JavaScript Example - Add product to category
const response = await fetch('http://localhost:3001/addrelated', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
data: {
parent_table: 'products',
parent_id: 101,
name: 'categories',
linked: 5,
reltype: 'primary'
},
check: true // Prevent duplicates
})
});
const result = await response.json();
if (result.status === 'Success') {
console.log('Relationship created with ID:', result.id);
}
POST/remrelated
Removes a specific relationship between two records. This endpoint deletes the relationship entry from the aurora_related bridging table without affecting the actual records.
Authentication
No authentication required for basic usage. The endpoint automatically retrieves app context from request headers.
Request Body
{
"data": {
"parent_table": "products",
"parent_id": 101,
"name": "categories",
"linked": 5,
"reltype": "primary"
},
"secure": false
}
Request Body Parameters
-
data
object
required
Object containing the relationship details to identify and remove.
-
data.parent_table
string
required
The name of the parent table in the relationship.
-
data.parent_id
number | string
required
The master_id of the parent record. Can be an encrypted string if using secure mode.
-
data.name
string
required
The name of the related/child table.
-
data.linked
number | string
required
The master_id of the related/child record to unlink.
-
data.reltype
string
The relationship type. If not provided or null, matches relationships with null reltype.
-
secure
boolean
When true, parent_id and linked values are treated as encrypted and will be decrypted before processing.
Default:
false
Business Logic
- Property Decryption: Any property prefixed with underscore (_) is automatically decrypted
- User Context: Retrieves user information from JWT token if available
- Safe Delete: Uses
DELETE TOP (1)to remove only one matching relationship, preventing accidental mass deletion - Reltype Matching: Matches either the specified reltype or null reltype
- Records Preserved: Only the relationship is deleted; both the parent and linked records remain unchanged
Success Response (200 OK)
{
"rowsAffected": [1]
}
Returns the number of rows affected. If the relationship didn't exist, rowsAffected will be [0].
Common Use Cases
Use Case 1: Remove Product from Category
{
"data": {
"parent_table": "products",
"parent_id": 101,
"name": "categories",
"linked": 5,
"reltype": "primary"
}
}
Removes the primary category relationship for product 101.
Use Case 2: Remove Item from Folder
{
"data": {
"parent_table": "articles",
"parent_id": 50,
"name": "aurora_folders",
"linked": 12
}
}
Removes article 50 from folder 12 (moves to "unfiled" state).
Example Usage
// JavaScript Example - Remove product from category
const response = await fetch('http://localhost:3001/remrelated', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
data: {
parent_table: 'products',
parent_id: 101,
name: 'categories',
linked: 5,
reltype: 'primary'
}
})
});
const result = await response.json();
if (result.rowsAffected[0] > 0) {
console.log('Relationship removed successfully');
} else {
console.log('Relationship not found');
}
Important Notes
- Idempotent: Calling remrelated on a non-existent relationship returns success with rowsAffected: [0]
- Single Deletion: Only removes one relationship per call. If multiple identical relationships exist (rare edge case), call multiple times
- No Cascade: Does not affect any child relationships or related data
POST/getrelated
Queries the aurora_related table to check if a specific relationship exists between records. Returns the relationship ID(s) if found.
Authentication
No authentication required for basic usage.
Request Body
{
"data": {
"parent_table": "products",
"parent_id": 101,
"name": "categories",
"linked": 5,
"reltype": "primary"
}
}
Request Body Parameters
-
data
object
required
Object containing the relationship query parameters.
-
data.parent_table
string
required
The name of the parent table to search for relationships.
-
data.name
string
required
The name of the related/child table.
-
data.reltype
string
required
The relationship type to match. Use empty string or null to match relationships without a type.
-
data.parent_id
number | string
Optional. The master_id of the parent record. If provided, filters results to this specific parent.
-
data.linked
number | string
Optional. The master_id of the linked record. If provided, filters results to this specific linked record.
Business Logic
- Property Decryption: Any property prefixed with underscore (_) is automatically decrypted
- Flexible Query: parent_id and linked are optional, allowing for broader queries
- Reltype Matching: Matches either the specified reltype or null reltype
- Returns IDs: Returns only the relationship ID(s), not the full relationship data
Query Combinations
| parent_id | linked | Result |
|---|---|---|
| Provided | Provided | Returns ID if exact relationship exists |
| Provided | Not provided | Returns all relationships for that parent |
| Not provided | Provided | Returns all relationships to that linked item |
| Not provided | Not provided | Returns all relationships for that table/name combination |
Success Response (200 OK)
// When relationship exists
{
"recordset": [
{ "ID": 456 }
],
"rowsAffected": [1]
}
// When no relationship found
{
"recordset": [],
"rowsAffected": [0]
}
Common Use Cases
Use Case 1: Check if Product has a Primary Category
{
"data": {
"parent_table": "products",
"parent_id": 101,
"name": "categories",
"reltype": "primary"
}
}
Returns the relationship ID if product 101 has a primary category assigned.
Use Case 2: Find All Items in a Folder
{
"data": {
"parent_table": "articles",
"name": "aurora_folders",
"linked": 12,
"reltype": ""
}
}
Returns all article-to-folder relationships for folder 12.
Use Case 3: Check Exact Relationship
{
"data": {
"parent_table": "products",
"parent_id": 101,
"name": "categories",
"linked": 5,
"reltype": "primary"
}
}
Checks if the specific relationship between product 101 and category 5 exists.
Example Usage
// JavaScript Example - Check if relationship exists
const response = await fetch('http://localhost:3001/getrelated', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
data: {
parent_table: 'products',
parent_id: 101,
name: 'categories',
linked: 5,
reltype: 'primary'
}
})
});
const result = await response.json();
if (result.recordset.length > 0) {
console.log('Relationship exists with ID:', result.recordset[0].ID);
} else {
console.log('Relationship does not exist');
}
Difference from getDataRows with relatedTable
- getrelated: Returns relationship IDs only, useful for existence checks
- getDataRows with relatedTable: Returns full record data from the related table, useful for fetching actual content
POST/counter
Atomically increments or decrements a numeric field in a database record. This endpoint is useful for counters like view counts, stock quantities, or any numeric value that needs atomic updates.
Authentication
No authentication required for basic usage. Table-level permissions are checked if configured.
Request Body
{
"data": {
"table": "products",
"field": "view_count",
"id": 101,
"value": 1
}
}
Request Body Parameters
-
data
object
required
Object containing the counter operation details.
-
data.table
string
required
The database table containing the field to update.
Example:
"products","articles","events" -
data.field
string
required
The name of the numeric field to increment/decrement. Must be alphanumeric with underscores only (validated server-side).
Example:
"view_count","stock_quantity","likes" -
data.id
number | string
required
The ID of the record to update. Can be prefixed with underscore (_id) for encrypted IDs.
-
data.value
number
required
The value to add to the field. Use positive numbers to increment, negative numbers to decrement.
Examples:
1- Increment by 1-1- Decrement by 15- Increment by 5-10- Decrement by 10
Business Logic
- Property Decryption: Any property prefixed with underscore (_) is automatically decrypted
- Permission Check: Validates table-level write permissions if configured
- Field Validation: Validates field name matches pattern
/^[a-zA-Z_][a-zA-Z0-9_]*$/to prevent SQL injection - Value Validation: Ensures value is a valid number
- Atomic Update: Uses a single SQL statement to atomically read and update the value, preventing race conditions
Security Features
- Field Name Validation: Only alphanumeric characters and underscores allowed
- Parameterized Query: All values are passed as SQL parameters
- Table Permissions: Respects table-level write permissions
- Numeric Validation: Value must be a finite number
Success Response (200 OK)
{
"rowsAffected": [1]
}
Error Responses
// 400 Bad Request - Invalid field name
{
"status": "Error",
"message": "Invalid field name"
}
// 400 Bad Request - Invalid value
{
"status": "Error",
"message": "Value must be numeric"
}
// 403 Forbidden - Permission denied
{
"status": "Error",
"message": "Write permission denied for table"
}
Common Use Cases
Use Case 1: Increment View Counter
{
"data": {
"table": "articles",
"field": "view_count",
"id": 50,
"value": 1
}
}
Increments the view_count field for article 50 by 1.
Use Case 2: Decrease Stock Quantity
{
"data": {
"table": "products",
"field": "stock_quantity",
"id": 101,
"value": -1
}
}
Decrements the stock_quantity field for product 101 by 1 (e.g., after a purchase).
Use Case 3: Add Multiple Likes
{
"data": {
"table": "posts",
"field": "like_count",
"id": 200,
"value": 5
}
}
Increments the like_count field for post 200 by 5.
Example Usage
// JavaScript Example - Track page view
const response = await fetch('http://localhost:3001/counter', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
data: {
table: 'articles',
field: 'view_count',
id: 50,
value: 1
}
})
});
const result = await response.json();
if (result.rowsAffected[0] > 0) {
console.log('Counter updated successfully');
}
// Decrement stock after purchase
const stockResponse = await fetch('http://localhost:3001/counter', {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
data: {
table: 'products',
field: 'stock_quantity',
id: 101,
value: -2 // Purchased 2 items
}
})
});
Important Notes
- Atomicity: The update is atomic, preventing race conditions when multiple users update the same counter simultaneously
- No Bounds Checking: The counter can go negative. If you need to prevent negative values, implement validation in your application logic
- Field Must Exist: The field must already exist in the table and contain a numeric value (or NULL, which is treated as 0)
POST/pasteItemToFolder
Moves or copies a record to a different folder. This endpoint supports both "cut" (move) and "copy" operations for organizing records within the folder hierarchy.
Authentication
Required - JWT Bearer token authentication
Authorization: Bearer <access_token>
Request Body
{
"action": "cut",
"table": "products",
"id": 101,
"folder_table": "aurora_folders",
"from_id": 12,
"to_id": 15,
"reltype": ""
}
Request Body Parameters
-
action
string
required
The type of paste operation to perform.
Values:
"cut"- Moves the item from the source folder to the destination folder. The item exists in only one folder after the operation."copy"- Creates a duplicate of the item in the destination folder. The original item remains in the source folder.
-
table
string
required
The database table name of the item being moved/copied.
Example:
"products","articles","events" -
id
number
required
The current_id of the record being moved/copied. For versioned tables, this is the current version ID.
-
folder_table
string
required
The table that stores folder records. Typically
"aurora_folders". -
from_id
number
required
The ID of the source folder (where the item is currently located). For items at root level, this is the root folder ID.
-
to_id
number
required
The ID of the destination folder (where the item should be placed).
-
reltype
string
The relationship type for the folder relationship. Usually empty string for standard folder organization.
Default:
""
Business Logic - Cut Operation
- Authentication: Validates JWT token and retrieves user context
- Version Check: Determines if the table uses versioning (live vs staged content)
- Master ID Resolution: For versioned tables, retrieves the master_id from aurora_data; for live tables, uses the provided id directly
- Existing Relationship Check: Checks if a relationship exists from the source folder
- Update or Insert:
- If relationship exists: Updates the linked folder ID from from_id to to_id
- If no relationship exists (e.g., moving from root): Creates a new relationship to the destination folder
Business Logic - Copy Operation
- Authentication: Validates JWT token and retrieves user context
- Record Duplication: Creates a complete copy of the record in the source table using the engine.copyRecord function
- Version Check: Determines if the table uses versioning
- New Relationship: Creates a relationship between the new record copy and the destination folder
- Returns New ID: The response includes the ID of the newly created copy
Success Response (200 OK)
// Cut operation
{
"status": "Success",
"res": {
"rowsAffected": [1]
}
}
// Copy operation
{
"id": 150,
"status": "Success"
}
For copy operations, the id field contains the ID of the newly created copy.
Common Use Cases
Use Case 1: Move Product to Different Category Folder
{
"action": "cut",
"table": "products",
"id": 101,
"folder_table": "aurora_folders",
"from_id": 12,
"to_id": 15,
"reltype": ""
}
Moves product 101 from folder 12 to folder 15.
Use Case 2: Copy Article to Another Section
{
"action": "copy",
"table": "articles",
"id": 50,
"folder_table": "aurora_folders",
"from_id": 10,
"to_id": 20,
"reltype": ""
}
Creates a copy of article 50 in folder 20. The original remains in folder 10.
Use Case 3: Move Item from Root to Subfolder
{
"action": "cut",
"table": "events",
"id": 200,
"folder_table": "aurora_folders",
"from_id": 1,
"to_id": 25,
"reltype": ""
}
Moves event 200 from root folder (ID 1) to subfolder 25.
Example Usage
// JavaScript Example - Move item to folder
const moveResponse = await fetch('http://localhost:3001/pasteItemToFolder', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + accessToken,
'Content-Type': 'application/json'
},
body: JSON.stringify({
action: 'cut',
table: 'products',
id: 101,
folder_table: 'aurora_folders',
from_id: 12,
to_id: 15,
reltype: ''
})
});
const moveResult = await moveResponse.json();
if (moveResult.status === 'Success') {
console.log('Item moved successfully');
}
// JavaScript Example - Copy item to folder
const copyResponse = await fetch('http://localhost:3001/pasteItemToFolder', {
method: 'POST',
headers: {
'Authorization': 'Bearer ' + accessToken,
'Content-Type': 'application/json'
},
body: JSON.stringify({
action: 'copy',
table: 'products',
id: 101,
folder_table: 'aurora_folders',
from_id: 12,
to_id: 15,
reltype: ''
})
});
const copyResult = await copyResponse.json();
if (copyResult.status === 'Success') {
console.log('Item copied successfully. New ID:', copyResult.id);
}
Important Notes
- Versioned Tables: For versioned tables, the operation uses the master_id for relationships. The master_id is retrieved from the aurora_data table based on the current_id.
- Live Tables: For non-versioned (live) tables, the provided id is used directly.
- Copy Creates Full Duplicate: The copy operation creates a complete duplicate of the record, including all fields. The new record has a new ID and new version history if applicable.
- Root Folder Handling: If an item was previously at the root level (no folder relationship), moving it creates a new relationship rather than updating an existing one.
- Folder Hierarchy: This operation only handles the relationship between items and folders, not the folder hierarchy itself. Use standard saveRow operations to create/modify folders.
Related Endpoints
- /initFolders: Initialize folder structure for a table
- /addrelated: Manually create folder relationships
- /remrelated: Remove folder relationships (unfile an item)
- /getrelated: Check which folder an item belongs to
Secure WHERE Clause
The Secure WHERE Clause system provides SQL injection-safe filtering for data queries using a structured JSON format.
Structure
{
"whereConditions": {
"operator": "AND|OR",
"conditions": [
{
"field": "column_name",
"operator": "equals|not_equals|greater_than|less_than|greater_than_or_equal|less_than_or_equal|like|not_like|in|not_in|between|is_null|is_not_null",
"value": "search_value"
}
]
}
}
Supported Operators
| Operator | SQL Equivalent | Description |
|---|---|---|
equals, = | = | Exact match |
not_equals, != | != | Not equal |
greater_than, > | > | Greater than |
less_than, < | < | Less than |
greater_than_or_equal, >= | >= | Greater than or equal |
less_than_or_equal, <= | <= | Less than or equal |
like | LIKE | Pattern matching |
not_like | NOT LIKE | Inverse pattern matching |
in | IN | Match any value in array |
not_in | NOT IN | Match none of values in array |
between | BETWEEN | Range comparison |
is_null | IS NULL | Null check |
is_not_null | IS NOT NULL | Not null check |
Examples
Simple Equality
{
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "status",
"operator": "equals",
"value": "active"
}
]
}
}
Multiple Conditions with AND
{
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "category",
"operator": "equals",
"value": "electronics"
},
{
"field": "price",
"operator": "less_than",
"value": "500"
},
{
"field": "inStock",
"operator": "equals",
"value": "1"
}
]
}
}
IN Operator with Array
{
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "category",
"operator": "in",
"value": ["electronics", "computers", "phones"]
}
]
}
}
LIKE Pattern Matching
{
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "title",
"operator": "like",
"value": "%wireless%"
}
]
}
}
BETWEEN Range
{
"whereConditions": {
"operator": "AND",
"conditions": [
{
"field": "price",
"operator": "between",
"value": ["100", "500"]
}
]
}
}
Security Features
- Field Name Validation: Field names are validated against a safe pattern to prevent SQL injection
- Operator Whitelist: Only predefined, safe operators are allowed
- Parameterized Queries: All values are passed as SQL parameters, never concatenated
- Type Validation: Values are validated and sanitized based on the operator